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Exact Solutions for Shielded Printed Microstrip
Lines by the Carleman-Vekua Method

JOHN G. FIKIORIS, JOHN L. TSALAMENGAS, MEMBER, IEEE, AND GEORGE J. FIKIORIS

Abstract —Exact analytical solutions for the field of the quasi-TEM
mode in various cross-sectional configurations of rectangularly shielded
printed microstrip lines are obtained on the basis of Carleman-type singu-
lar integral equations (SIE’s). There are no limitations on the dimensions
or the proximity of the strip conductors to the shield. For the kernel of the
SIE, strongly and uniformly convergent series expansions have recently
been developed that are suitable for the exact solution of the equation by
the Carleman—-Vekua regularization method, which proceeds by first solv-
ing the so-called dominant equation. The procedure leads to rapidly
convergent series solutions for the field of the quasi-TEM mode even
when the conductors are large or very near the shield, i.e., in situations for
which numerical techniques become inadequate. Characteristic values of
the shielded microstrip lines are evaluated by summing a few terms, while
field plots, requiring more terms, are shown for various configurations
including the case of close proximity.

I. INTRODUCTION

HIS PAPER is based on the results of 'a previous

paper [1] by the authors, in which rapidly convergent
Green’s function expansions for rectangularly shielded
printed microstrip lines were developed. The main objec-
tives and the rationale of the method are fully explained in
[1] and in two other recent papers by the first two of the
authors [2], [3] and will not be repeated. We merely stress
here what we believe to be a unique advantage of our
analytical approach: It is able to provide exact results for
the E and H fields of the mode at any point inside the
guide, in particular, near edges or when the conductors are
large or close to each other or to the walls. In correspond-
ing scattering problems by, for example, strips on sub-
strates— to which our approach can be further extended
—it provides accurate near-field evaluations. These are
situations where well-known numerical techniques
(Galerkin, finite elements, etc.) prove inaccurate, as dis-
cussed further in [1] and [3]. Such techniques are sufficient
and preferable for quantities like the characteristic
impedance Z, or the effective dielectric constant of the
line, owing to the stationary character of the related inte-
gral formula; even then, however, cases of close proximity
are excluded. Furthermore, in our opinion, they often fail
to identify the main influence of various factors affecting
the solution, something important to research and design.
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Fig. 1. Configuration of shielded single microstrip line.
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Our method, on the other hand, systematically examines
their influence (particularly on the Green’s function of the
problem) and provides alternative, fast-converging evalua-
tion procedures and a clear estimate of their accuracy
[1]\—[3]. Finally, we remark that the quasi-TEM mode is
used in the literature as a zeroth-order solution in an
iterative evaluation of the true lower hybrid mode of the
line.

The microstrip line configurations are shown in Figs. 1
and 2. Two dielectric sublayers ¢; and e, divided by the
surface y =0 are enclosed in a rectangular shield a X (b,
— b,). The strip conductors of width 2¢ are printed on the
interface with center at x = A for one-conductor configu-
rations (Fig. 1) and at 4 and a — 4 for symmetric two-
conductor ones (Fig. 2).
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The Green’s function G for these configurations is a more appropriate one when line sources are near the walls
potential function with zero value on the shield surface x=0,a and when y=0; this last condition, y =0, is
and a unit line source on the interface at (x’,0). It is so always imposed in the process of obtaining the integral
defined that the electrostatic potential ¢(x, y) of a line equation for strip conductors printed on y = 0. We there-
charge ¢ (C/m) at (x',0) at any point (x, y) inside the fore provide here the explicit expansion G; for G With
shield is: ¥(x, y) = qG(x, y; x')/7(¢; +¢,). For G four k=1,2 denoting regions (0 < y <b;), €,(b,< y <0) in
expansions have been developed in [1]. The last, Gy, is the the cross-sectional configuration of the line, we have from
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where, with z denoting the complex conjugate of z,
d,.(z) = Re{exp (mz)[ E,(mz — imm) — E;i(mz)]

+exp(— mz)[ E,(— mZ — imm)

- E(-mz)]} =d,(-2) (7)

E,(z) being the exponential integral function [1], [4]. Also,

ma ma
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Also, we define 8(x)=1 for x = integer, 8(x) =0 other-
wise, while u, are the positive roots of the transcendental

equation
b "
12
). 1)

Obviously, in this form of G three logarithmic terms are
extracted out in closed form, corresponding to line sources
at (x’,0) and at (the image positions) (— x’,0) and 2a —
x’,0).

Now let 0,(x) (C/m?) be the surface charge distribution
of the single-strip conductor of Fig. 1. The electrostatic
potential function at any point (x, y) inside the shield is

bilxy) = 77(6 +¢ )/ (13)

€ cotu= ezcot(

A+c

o (x' )G (x, y; x ) dx’.

23

If the potential of the strip conductor is ¥(x,0) =V (Ad—c¢
< x < A+ ¢), a Carleman-type singular integral equation
(SIE) [5], [6] is obtained for o,(x) by letting y =0 in (13).
Observing further that G{(x,0; x’) is the same for either
k=1 or k =2, owing to the continuity condition at y =0,
and setting x = A+ ct, x’=A+ct’ (-1<¢,1'<1), and
o(A+ct')=o0(1
(At ) =o(1) ”
Gi(A+ct,0; A+ct’) =G(1,1)
we end up with the “traditional” form of the Carleman-
type equation:
7(e;+€,)V ‘
— _{1__2_)__ —lncf1 o(t) dt’+f1 G(¢,t)o(t')dr’
c -1 -1
=f1 Injt—t'lo(t'ydt’. (15)

It should be noted that for y =0 the expression
$;((x,0; x") simplifies considerably while S '/ 8)(x,0; x")
=( for j=1,3,4.

II. SOLUTION OF THE INTEGRAL EQUATION BY THE

CARLEMAN-VEKUA METHOD

If the left-hand side of (15) is considered for a moment
to be a known function of ¢, then the Carleman—Vekua
method of regularization [6] proceeds by inverting it with
the use of Carleman’s formula [5]:
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where f denotes principal value integral. This equation

may be written as a Fredholm-type integral equation [6] in
the concise form
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The step from (16) to (17) and (18) involves a change in
the order of integration over ¢+’ and 7, both for the ordi-
nary and the principal value integral. Since G*(7, ) and
dG(7,t)/d are nonsingular functions in —1<¢,7 <1,
as seen from (1) and (2)—(6), this change is permissible [6,
pp. 47-52].

We next expand o(7) in a series of Chebyshev polynomi-
als:

o)== L gy (o)

incorporating, with the common factor (1—¢2)~1/2, al-
ready present in 4(r) and K(z, t'), its expected behavior at
the edges = +1. Substituting into (17), multiplying by
Ty (1) (M=0,1,2,---), integrating from 1= —1 to t=1,
and using the orthogonal property
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in which

Kyn = f_ll%f_llTM(t)K(t, vydidt’. (22)

As seen from (18) the coefficients K wmw Tequire the evalua-
tion of triple integrals over ¢, #, 7. The advantage is that
the dependence of K(t,t) on ¢,¢ appears in separated
form and the series involved converge rapidly and wuni-
formly. The order of integration can be interchanged in
any desired way, greatly facilitating the evaluation of K MN-
The result can be expressed in terms of six integrals, I; to
I¢, defined below in the order in which they come up in
expressions (18) and (22). These integrals are evaluated in
the Appendix. Two preliminary results help reduce the
number of symbols. From (20) and the first integral in the
Appendix, we have

Tu(t)(zy+ 2,5t T
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The triple integrals appearing in (18) and (22) are then
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The final expression for K, can now be written in a concise expression by introducing the two additional sym-

bols Ly (4, ) and Fy (4, c). Thus,
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ITII. DoUBLE-STRIP CONFIGURATIONS Letting y=0, x=A+ct, x’'=A+ct', x"=a—-A+ct",

Such configurations lead to a system of integral equa-
tions for ¢,(#,;) and o0,(¢,). More practical cases consist of
strips with the same width, 2¢, and centers at x =4 and
x=a— A4, ie., symmetrically placed with respect to the
midplane x = a /2, as shown in Fig. 2. They are raised to
potentials ¥V and QV, with Q =1 implying equal currents
and charges, Q = — 1 opposite ones, and @ = 0 the absence
of the left strip, i.e., the single-strip configuration of Fig. 1.
Owing to the symmetry

o (—1)=Qo0(t) =Q0(1), (46)
and the potential k(x y) at any point inside the shield is

-1<g1xl1

Vilx,y) = ol a6k y ) av

7r(eI+c

+/ Aﬂoz(x VG (x, y; x")dx",

a—A—c

k=1,2. (47)

Gi(A+ct,0; A+ ct’Yy=G(1, 1), and GJ(A+ct,0;a— A
+ct")y=G5(t,t"), with t,¢',¢t"” in [—1,1}, we obtain a
Carleman-type singular integral equation for o(1):

o
- —(€1+62)V—lncf1 a(t) a’t’+/1 o(t)G(¢, ¢y dt’
c -1 -1
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C
. o(t. t") -1 + T ”
[Gz(,t) n|l 2A—a(t t)[]dt
= [" o()nje—r|dr. (48)
-1

Inverting this as before with the use of Carleman’s formula
[5], we end up with a relation similar to (17), namely,

o(1)+ fle(t,t’)o(t’) dt’
+of' Ka(e.r)a(=r)ar=ny(r) (49)
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where
1 1 . | 1" ’ ’ 1 1 ’ d/
ho(1) = —— —i‘/—T—-t—z[:(el+ez)V+lncf_la(t )dt'+Q n|2A~—a|f_1o(-t) ¢ (50)
1 1 4 c dr 1 V1—-+2
Ky(1,1) = ——me { — ¢(7,1)~1n|1 —t ~
(1) 721-1? ln2f—1[G2(T’t) o +2A—a(7 t)” 1- 72 J(—l T—t
aG5(r, ¢t/ ¢/(2A—a
2; )- (c ) dr ;. (51)
T 1+ — !
2A—a(T t)
It is worth noting here that G5(, t') differs from G°(7,¢’) where

only in that x’=A+ct’ in the former is replaced by
a — A+ ct’ in the latter, a change that can be easily traced
down the sequence of equations (2), (6), (10), (11), (18). To
save space we will not give for K,(¢,t’) a result as explicit
as (18) for K(¢,t’), but will proceed to the solution of (49)
through the substitution (19) for ¢(¢) and the sequence of
steps following it up to (21) and (22). We will then provide
explicit results for the new coefficients K, (Q), where
K,,;n(0) = K, as defined in (22) and (45). Two additional
integrals, which are also evaluated in the Appendix, should
first be defined:

Po= 1 fl Ty(t) fl Ty (1)

MY a2 12 1o
[Tt =" (r-1) T _wa (52
n 2A_a’rt"/i——72tt()

W = c fl TN(t’)

MN " n2(24—a) 11— 7

/1 TM(t) fl Vl"’l’z

~1y1=-¢2 -1 Tt

dr
. dr'dt. (53)
1+2A_a('r—t)

In place of (21) we now end up with the following set of
linear equations for the determination of the expansion
coefficients a, of o(¢) in (19):

aT o0
aM'z“M + Z KMN(Q)aN
N=0

Sy [ (e, +€,)V
TV

+ag(lnc+QInRA-al)|,

M,N=0,1,2,---

(54)

KMN(Q) =KMN+Q("1)N(PMN+WMN+ KI(!N):
0=0,4+1. (55)

K ;v are obtained from K,,, given in (43)—(45), if the
following substitutions are made in these equations: The
integrals 1,(0; z;, z,) (for N = 0) and I remain exactly the
same; in the integrals I,(N; z, z,) (for N> 0), I,, and I,,
as well as in the expression g(N; z,, z,) defined in terms of
I, in (35), A is replaced by a — 4; in the integrals I, and
I, the parameter 24 is replaced by 4. Otherwise expres-
sions (43)—(45) remain unchanged.

IV. EVALUATION OF THE FIELD

The potential ¢, (x, y) at any point inside the shield is
given by (13) for the single-strip configuration and by (47)
for the double strip-configuration. Changing the variables
x'=A+ct', x"=a—~ A+ ct” and substituting from (19)
and (46), we end up with integrals of the form

[ s|n@h=rar

in which the f(¢’) are nothing more than functions appear-
ing in the integrals I,, I; and I, defined by (29), (31), and
(33). Therefore, the integration of (13) can be carried out
immediately, leading to the result given below; it is written
in a compact form for all three cases, 0 =0, +1, using the
following simple notation:

Oy=1 forQ=0;0y=0(-1)"

for 0=+1 (56)
Yilx, ¥) = o(x, 50, 4)  forQ=0 (57)
Vi, ¥) = (%, »;0; )+ ¢, (x, y; Qs a— 4)

forQ=+1 (58)
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where
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77(51+52) Z Oyay 5 2( X y) 3 2( J’)

1 1
+ = IZ(N x+A,c, y)—2—-b—[(a—x)(bk—y)IZ(N;2a—A,—c,0)+x(bk—y)12(N;a+A,c,0)

maxy mmy
(__1)k 0 sin( )smh( p )
a
+(a—x)yL(N;2a— A, —¢,b,)+xyL,(N;a+ 4,¢,b,)] - >
€% m=1 mm
may\ max
sin sinh
i b, b, a+ A e
"Dy + Z mna I{N,m;—a b ’_b_
m=1 mwsinh( ) k k
k
L (mmy\ a—x
sin sinh | maor
2 bk bk A—-2a 7c
+ Z 4 N,m;'n' s 5
m= bk bk

mra
1 mar sinh( ; )

k

+ mi;l {sin( m:x )sinh(mqr b"; Y )/[mver sinh(%r«bk”}

) b= (1= y/b, ) [xg(N; a+ 4,¢)— (x~ a) g(N;2a ~ 4 —c)]/[ (b—l_%)]

I1=1,2

00 . bk..
+2b7 ) sin|u,
1

2 i v e

n=1

a—x
+sinh(un 5 )g(N;2a-A,—c)]/[Hu sm(
1
)] s b, b a—x i A-2a @ b mGgx n at+ A 7c
inl —= | 8| 2% . i g . -
sin b[ b[q St wq b 4 s g, T ’ -+ s b[ ) 4 > g, T b[ 5 b[
. mqa\l € [ b €& (b
qwbksmh( b, )[blﬁ(blq)—g;b‘(;lq”

2 = by—y\l . a—x A—-2a =c . X
—— ) sin|u, > smh(unT L(N,¢x — | +sinh -

lnl 1

.,4(N,q;_,,a;f,_g)J/{Hnsin(un;_;)[(i_j)z_(;;_;ﬂ} | 59)

The field components E, = — 3y /9x, E,=~ 3y /9y are obtainable from (57)-(59) by direct differentiation.

}"' Z( 1)51

1=1,2

)
>
g=1
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TABLE 1
0=0
3 10 10 10 11 11 17
aoxlo alxlo a2x10 a3x10 a4x10 agx10 agx10
.16503972 .69760991
.16580063 .71207912 .24783549
.16589042 .71363888 .24902300 .10272891
.16589882 .71380613 .24916498 .10282790 .36188051
.16589969 .71382505 .24918296 .10284161 .36196967 .13021395
.16589979 .71382739 .24918536 .10284361 .36198374 .13022276 .4961495
Q=1
a,x10 9 a;x1010 a,x1010 ayx1010 agx1011 agx1011 agx1012
.15221197 .68273597
.15267859 .69523549 .22274080
.15274041 .69658409 .22384067 .97737300
.15274589 .69672972 22396869 97827682 .33541122
.15274645 .69674623 .22398514 .97840342 .33549406 .12181764
.15274652 .69674827 .22398734 .9784218 .33550713 .12182584 46311644
Q=-1
anlOg alxlo10 a2x1()10 a3x1010 a4x1011 a5><10ll agx10 12
.17872877 .70775257
.17987161 .72441468 .27554206
.17994227 .72620774 .27682951 .10762585
.18000945 .72639918 .27698752 .10773426 .38995803
,18001072 .72642079 .27700723 .10774910 .39005391 .13894181
.18001088 .72642347 .17700987 .10775126 .39006906 .13895127 .530/0968
a=4,b =2, b,==1, A=34, c=05, ¢, =10¢,
V. NUMERICAL RESULTS AND COMPARISONS TABLE II
We start by providing in Table I results for the expan-
. . . . A ¢ qQ Z (0} €ort
sion coefficients a, of o(f) in the case a=4, b;=2, PR 5 " :3109 ; £
R . . . .80037
by=~1, A=34, ¢c=0.5, ¢,=10¢,, and Q =0. The strip 1 103 52725 5.97238
R . - .10269 5.547
is placed very close to the right wall x = a and the results 0.2 0 67.99315 387612
.. . . 1 87.23439 .
show that by retaining the first seven coefficients an accu- s} 50.43838 $:36201
racy in o(¢) and Y,(x,y) of at least three significant : 1 %ééﬂ; 2?3321
decimals is obtained, i.e., |ag/a,| = 0.001. In other situa- 035 o s A
tions, with the strip closer to the center, even fewer a, will Ry a3 S
suffice. By providing values of a,, in C/m?, for successive 29 0l ¢ R 313832
values of the truncation size N,,, Table I shows, further, 02 o ST 3-0e1l
how rapidly the a settle to their “final” values and with 2 10.41284 590135
what accuracy. As observed previously [3], the evaluations 0.3 0 s5.65141 gggggg
of the characteristic impedance Z, of the shielded mi- A 5131100 5.67509
p 0
. . 0.4 0 48.36002 5.87600
crostrip and of its €., depend only on a, (as well as on a, 1 53.79658 6.06690
. . . - .89081 .6651
for €, = ¢;, a special case of this paper’s analysis that may 0.5 0 42.70333 £.90381
be based on the simpler forms G,, G of G obtained from -1 38,0868 Se7078
[1]), which settles to its “final” value for much smaller B4 020 AR o
truncation sizes (N, =3 provides four-decimal accuracy 0.4 'é Eggggg; 3-Sos8
. 7 .34663 5.75084
for a,); however, values of o(¢) or of the field ¢, (x, y) 1 A aces R

require the use of more ay,.

In Table II and for a =4, b;=2, b, = —1, and ¢, =10¢;
we provide computed values of Z, and e, for various
positions A4 and widths 2¢ of the strip conductors in all
three cases Q =0, +1. Finally, in Table IIL, Z, is com-
puted and compared with values obtained previously [7] by
two or three other numerical methods. It is remarkable to
notice that our values of Z;, being in very satisfactory
agreement with those of [7], are obtained, with the indi-
cated accuracy, even for truncation size N, =0; sizes
N, =2 and higher do not change them. This is a further

a=4, b =2, by=-1, ¢,=10¢

TABLE III

COMPARISON OF Z, WITH EXISTING RESULTS

by /b, a/(2c) f2c/by| e/ Z,(0)  Valuesof 1,8) fron [7]
5 10 1 9.6 49.08 48.4 48.5
9 10 2 9.6 33.63 33.1 32.8
5 10 0.8 9.6 54.45 53.8 53.9
5 6 9.6 48,60 47.9 48.5
5 10 0.4 9.6 70,38 69.7 70.9
9 10 1 6.0 61.24 60.49 62.71  60.97
9 10 4 6.0 26,09 25.95 27.30 26,03
9 10 0.4 6.0 87.41 86,30 91.37 89.91
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Fig. 3. Surface charge density o(x) and equipotential and field lines of
shielded single microstrip: a =2, by =—b, =1, A=12, ¢=03, ¢, =
10¢), 0 =0.

1
T
1Y

[

Fig. 4. Surface charge density o(x) and equipotential and field lines of
single microstrip very near the shield: a =4, by =2, b,=—-1, 4A=34,
c=0.5, ¢, =10¢, 0=0.

corroboration of the previous remarks and is due, of
course, to the fact that the strip is rather narrow and quite
far from the walls.

What is claimed herein is that, beyond its generality, our
exact analytical treatment is applicable to cases of close
proximity of the strip to the walls or between the strips
(for Q = +1) and to very wide strips as well. In addition, it
is able to provide accurate results for the field everywhere
and in all cases by using the appropriate form of G. This
aspect has been discussed in detail previously [1]. Here we
provide, in Figs. 3-6, detailed field plots: the nine equi-
potentials { = 0.9-0.8— - - - —0.1 between ¢ =1 on the strip
and ¢ =0 on the shield, as well as the 20 field lines that
cut the 2c-wide strip at equispaced intervals of ¢/10. A
dotted line plot of 6% (¢), 0~ (¢), on the upper and lower
faces of the strip, is also drawn. The cases Q = 0, with a
certain shield width a, cover also configurations with
@ = —1 and double shield width 2a. In Figs. 5 and 6, for
Q= ~1 and Q =1, only the right half (¢ /2 < x < a) part
of the plot is given, the left half being its image with
respect to the midplane x=a/2. A truncation size of

1
1
1
1
]

L [TT1]

Fig. 5. Same as Fig. 4, but for double microstrip with 0 = —1. Only the
right half-section a /2 < x < a is shown.

L |
Fig. 6. Same as Fig. 5, but with @ =1.

N,, =6 or 7 was used in all these plots, most of which, as
may be observed, allow very close proximity of the strip to
the shield. In all cases €, =10¢, was considered. For some
configurations comparisons were also made with the case
€, = ¢;. No plots are included here, but the main difference
they exhibited was the expected concentration of the
equipotential lines near the strip when €, changed from ¢,
to 10¢;.
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APPENDIX

Here we outline the analytical evaluation of the integrals
L I, to I, Py, and W, defined in (24), (26), (29), (31),
(33), (36), (39), (52), and (53). Starting with (24), we use
the change of variables ¢ = cos§ and 7= cos ¢ and reverse
the order of integration to obtain

I=j:sin2(pfﬂ cos(M8)

dode
o cosp —cosf

2
T T

=— wf sinpsin Mpdp = — ——8,,. (A1)
0 2

In obtaining this result use was made of the basic Hilbert
formula [8, p. 207]:

= cos(M®9) )(1 T\ (t) dt sin(Mo)
focos0 cosq) 1yl—¢2 t—7 -7 sing

r=cosp,t=cosf, M=0,1,2,--- . (A2)

Next come the integrals I}, I5 defined in (26), (36). With
t’,7 in [—1,1] and the restriction |z, /z;| <1/2 we obtain

In|z, + z,(7 + ¢')]

In|z| il( Zz)p( )
=ln|z|— ) —|[-—) (r+¢
H P=1p Zl
o0 1 22 P p
=In|z|— ) —(——) Y (2)rers (A3)
' p=1P\ 21 s=o(s)
1 1 = z,\?
D e Ny
n+z(t+t) 7 ,Z0\ &
Lo (_a\" & (p) s
-— 3 (—Z—) z(s)up . (Ad)
1p=0 1/ s=0

We consider now the following integral (see, also, [9, p.
374)):

Ty(?) '”
J(s,N)=1} ¢t dt= | cos*@cos N0db
(s ) f—l Vi-¢? fo
0, s<N
'n- s
={—|stN s> Nand s+ Neven
2° 2
0, s> N and s + N odd.
(AS5)
Substituting (A3) into (26) and using (AS) we obtain
) 1{ z,\*
I(N;z,,2,) =1n|z|78y — Y -~
' p=max(1,N) P 4
p—N
T (2)76.09(p=5.N) (6)
s=0

while from (A4), (36), (A2), and the changes of variable
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t'=cosf, T=cos¢,

—-f

N

cosNH/ s1n<psm(M(p)—“ Z

o) P
( 22)
Zy p=0\ A1
p

Y (?)cos‘wcosp_30d0dq>.

s=0
Using 2singsin(Me) =cos(M —1)p —cos(M +1)p we

flIlall) gE t
r= N

p—N

L (B

s = max(0, M —1)
Ju(s, M=1)—=J(s, M+1)]. (A7)

Coming next to I, in (29) and observing that with real
21y 29,23,

I(N,M;z,,z,)=

In [(z1 +z,0') 232] =2Reln(z, +izy + z,t")
we obtain

In(z, +izy+ z,t) ‘/ﬂ

= 2Ref In(z, + izy+ z,cos 8 ) cos N0 df
0

L(N;zy,2,,24) = 2Ref

= Ref” In(z, + iz, + z,cos 8 ) cos NO df.

- T

(A8)
For N > 0 we integrate by parts:
1 w  Z,sin N sind
IL=— Ref\ 2
° N —n2y+izy3+ 250080
2 o (7 e sin § &0 A0
I _,,zl+zz3+220050 (49)

and use the change of variable { = e, d¢ = it d6:

1 §N—1(§2_1)~
I,=—Re
8= 1§2+2 { +1
)
N-1(¢2 1)
R SR S (it} LI

—N_ COkP=1 (§“§1)(§_§2)

27 JEEE 1)
=——Re|——F|
. N §1 - §2
It is obvious that ¢, =1/¢;; therefore, one of the roots of

2 +2z +iz)8/2,+1=0, say §, falls inside the unit
circle, the other outside. Finally,

N>0, |§]<1.

(A10)

2@
L(N;z,2,,23) = — WRG(QN),
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For N =0 we get, from (A8),
L,(0; z,, 25, 25) ———2Refﬂln(zl+iz3+zzcosl9)d0
0

7 +izy+y (2, + iz3)2— 22

2

=2qln

(A11)
This result was obtained on the basis of the standard
integral [9, p. 527]
a+va?—-b?

5 , 0<|b|<a.

fwln(a +bcosx)dx=mln
0
(A12)

Here we have |z,| <|z, + iz;], but @ = z; + iz, is now com-
plex. However, it is easily shown that the formula holds for
complex a as well.

For the integral I, in (31) we change the variable
t'=cosf to get

I3(N; 23, 2,)
= fﬂcos N@sin(z, + z,cos8) dd
0

=sin zlfwcos NOcos(z,cos8) db
0
+coszlfncosN0 sin(z,cos8) db
0

wsin z,(—1)"2J(z,), N even (A13)
—acosz;(— 1)V V20 (2,), N odd
where Jy(z,) is the Bessel function and the final result was
based on standard integrals [4, p. 361].
We next go to I, and perform first the principal value
integration with respect to ¢. Changing the variables ¢ =
cosf, T=cos¢ and using (A2) we obtain

ncos(M0) do

I =_/Wsin2 cos(z,+ z4cos f
S poos(zy+ 2, (p)o cos ¢ —cosf ?

7T
=— 77'[ sin @ cos (23 + z,cos @) sin Mo dop
0

T 7
=~ — [ [cosz;cos(z4cos ) —sin z;sin (z,cos )]
2 Jy }

Jeos(M —1)¢ —cos(M+1)p] de

77,2

Mn
=— T{COS Z48in = [JM_1(24) + JM+1(Z4)]

] M
+ sin z5cos e [a—1(z4) + ZM+1(Z4)]}'

In the above use of standard integrals from [9, p. 402] was
made. Finally, even for M =0, we obtain

7’ M
JM(z4)sin(—i— + 23). (A14)

4

I(M; 23, 24) = —

Next comes the integral I, in (33); d,,(z) is defined in
(7) and it is obvious that I, is the sum of four integrals:

1,(N,m; z;, 7,)
= (=1)"Iy(mz, — imm, mz,) — Iy (mz,, mz,)

+(=1)"1y(= mz, + imm, — mz,)

—IN(—mfl,—mEZ) (A15)
where
1 Ty(1)
I,(z;,z,) =Re exp(z,+z)E (z3+ 240) —=—=dI
N(3 4) /‘1 P(3 4)1(3 4)@
(Al6)

z,, 2,4 being, in general, complex constants. Changing the
variable ¢ = cos § in (A17), integrating by parts, and using
the following relation [4]: d/dz[e’E(z)]=e’E,(z)—1/z,
we obtain

Iy(z;,2z,) =Re [(:re"3“'*c‘)59E1(z3 + z4c0s8)cos N8 do

zZ T
=Re—“f sin N0 sin
NJy

[e#+#<5 0 (2, + z,c08 8)

—1/(z23+ z4c080)] dé. (A17)

1 1
For N > 0 we use sin Nfsinf = 5 cos(N—-1)8 — 3 cos(N

+1)# and following the steps that led from (A9) to (A10)
we obtain the recurrence relation:

Z4
IN(Z3> z4) = N [IN*l(Z3’ 24)— IN+1(Z3’ 24)]

+ %Re({{"), N>0 (A1)

where ¢, is the root of {%+2(z,/z,)¢ +1=0 with |{;| <1.
To use (Al8) requires the evaluation of I(z,, z,) for two
successive values of N. Although it is possible to obtain an
analytic evaluation of I,(z;,z,)—on the basis of the
Maclaurin’s expansion of E;(z)+Inz and the use of the
integrals J(s, N), in (A5), and I,(N; z,, z,,0)—the result-
ing expressions, involving triple series, are cumbersome
numerically. It was found preferable in this particular case
to evaluate numerically I,(z, z,) for either N=1, 2 or
N =6, 7 and to use the recurrence formula (A18) forward
or backward, respectively. As has been discussed above in
Section V N =7 is sufficient as an upper matrix size. It
was also noted that (A18) works better in the backward
direction, although with N limited up to 7 no problem
arises in either direction.

There remain the integrals P,,, W),y defined in (52),
(53), occurring in double-strip configurations. They are
very similar to the integrals I, I in (26), (36), differing
only in that the sum 7 +¢ in the latter is replaced by
7 —¢t’. Following the steps indicated in (A3)—(A7), we end
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up with

1

el

aln2 p=max(l,N) P

6MO
PMN

p{éo (_1)5(§)J(s,0)1(p ~5,N) (A19)

)p+1

(-1*(2)7(p—s,N)

4

1 0
WMN:_E g (2A—a

p—N

r

s = max(0, M —1)

(s, M=1)—J(s, M +1)]. (A20)

REFERENCES

J. G. Fikioris, J. L. Tsalamengas, and G. J. FlklOI‘lS, “Strongly
convergent Green’s function expansions for rectangularly shielded
microstrip lines,” IEEE Trans. Microwave Theory Tech., vol. 36, pp.
1386-1396, Oct. 1988,

J. G. Fikioris and I. L. Tsalamengas, “Strongly - and uniformly
convergent Green’s function expansions,” J. Franklin Inst., vol. 324,
no. 1, pp. 1-17, 1987.

J. G. Fikioris and J. L. Tsalamengas, “Exact solutions for rectangu-
larly shielded lines by the Carleman—Vekua method,” IEEE Trans.
Microwave Theory Tech., vol. 36, pp. 659-675, Apr. 1988.

M. Abramowitz and 1. A. Stegun, Handbook of Mathematical Func-
tions. New York: Dover, 1972.

G. F. Carrier, M. Krook, and C. E. Pearson, Functions ofa Complex
Variable. New York: McGraw-Hill, 1966.

F. D. Gakhov, Boundary Value Problems. Oxford: Pergamon Press,
1966 (English translation by I. N. Sneddon).

H.-Y. Yee and K. Wu, “Printed circuit transmission-line characteris-
tic impedance by transverse modal analysis,” JEEE Trans. Mi-
crowave Theory Tech., vol. MTT-34, pp. 1157-1163, Nov. 1986.

R. P. Kanwal, Linear Integral Equations, Theory and Technique.
New York: Academic Press, 1971.

L. 'S. Gradshteyn and 1. M. Ryzhik, Tables of Integrals, Series and
Products, 4th ed. New York: Academic Press, 1965 (English trans-
lation by A. Jeffrey).

(1

2]

i3]

33

- John G. Fikioris was born in Sparta, Greece, on
April 9, 1931, He received the Diploma of EE.
and M.E. from the National Technical Univer-
sity of Athens, Greece, in 1955, the M.S.EE.
degree of Rensselaer Polytechnic Institute, Troy,
NY, in 1958, and the M.A. and Ph.D. degrees in
applied physics from Harvard University, Cam-
bridge, MA, in 1963.

From 1962 until early 1966, he worked as a
Research Scientist with the RAD division of
Avco Corporation, Wilmington, MA. From Jan-
uary 1966 to June 1972, he was Professor of Electrical Engineering at the
University of Toledo, OH. In May 1972, he was elected Professor of
Wireless and Long Distance Communications at the National Technical
University of Athens, a position that he holds to date. His research
contributions include topics in guiding phenomena, wave optics, antennas
and wave propagation, diffraction and scattering, fundamental electro-
magnetic theory, and special mathematical techniques in applied electro-
magnetlcs

+ Dr. Fikioris is a member of Sigma Xi.

X

John L. Tsalamengas (M’87) was bom in
Karditsa, Greece, on April 26, 1953. He received
the Diploma of Electrical and Mechanical Engi-
neering and the doctor’s degree in electrical engi-
neering from the National Technical University
of Athens (N.T.U.A)), Greece, in 1977 and 1983,
respectively.

In 1983 he joined the Hellenic Aerospace
Academy and worked there until the end of
1984. He then joined the Department of Electri-
cal Engineering of N.T.U.A,, first as a Research
Associate and, in July 1987, as Assistant Professor of Electrical Engineer-
ing. His ficlds of interest include waveguide propagation, printed mi-
crowave (microstrip) devices, and boundary value problems in electro-
magnetic theory.

H

George J. Flklons was born in Boston, MA on
December 3, 1962, He received the Diploma of
Electrical Engmeermg from the National Techni-
cal University of Athens, Greece, in 1986. Since
September of that same year he has been doing
graduate work at the Division of Applied Sci-
ences, Harvard University, Cambridge, MA. His
main fields of interests are electromagnetics and
applied mathematics. '




