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Exact Solutions for Shielded Printed Microstrip
Lines by the Carleman-Vekua Method

JOHN G. FIKIORIS, JOHN L. TSALAMENGAS, MEMBER, IEEE, AND GEORGE J. FIKIORIS

Abstract —Exact analytical solutions for the field of the quasi-TEM

mode in various cross-seetional configurations of rectangularly shielded

printed ndcrostrip lines are obtained on the basis of Carleman-type singu-

lar integraf eqnations (WE’s). There are no fimitations on the dimensions

or the proximity of the strip eorrduetors to the shield. For the kernel of the

SIE, strongly and uniformly convergent series expansions have recently

beeu developed that are suitable for the exact solution of the equation by
the Carleman-Vekua regtdarixation method, which proceeds by first solv-
ing the so-eaflert dominant equation. ‘f%e procedure leads to rapidly

convergent series scdntions for the field of the quasi-TEM mode even

when the conductors are large or very near the shield, i.e., in situations for

which munericaf teehrdques beeome inadequate. Characteristic values of

the shielded microstrip lines are evaluated by summing a few terms, while

field plots, reqniring more terms, are shown for various configurations

including the case of close proximity.

I. INTRODUCTION

T HIS PAPER is based on the results of’ a previous

paper [1] by the authors, in which rapidly convergent
Green’s function expansions for rectangularly shielded

printed microstrip lines were developed. The main objec-

tives and the rationale of the method are fully explained in

[1] and in two other recent papers by the first two of the

authors [2], [3] and will not be repeated. We merely stress

here what we believe to be a unique advantage of our

analytical approach: It is able to provide exact results for

the E and H fields of the mode at any point inside the

guide, in particular, near edges or when the conductors are

large or close to each other or to the walls. In correspond-

ing scattering problems by, for example, strips on sub-

strates— to which our approach can be further extended

—it provides accurate near-field evaluations. These are

situations where well-known numerical techniques

(Galerkin, finite elements, etc.) prove inaccurate, as dis-

cussed further in [1] and [3]. Such techniques are sufficient

and preferable for quantities like the characteristic

impedance 20 or the effective dielectric constant of the

line, owing to the stationary character of the related inte-

gral formula; even then, however, cases of close proximity

are excluded. Furthermore, in our opinion, they often fail

to identify the main influence of various factors affecting

the solution, something important to research and design.
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Fig. 1. Configuration of shielded single ruicrostrip line.

Fig. 2. Configuration of shielded double microstrip line.

Our method, on the other hand, systematically examines

their influence (particularly on the Green’s function of the

problem) and provides alternative, fast-converging evalua-

tion procedures and a clear estimate of their accuracy

[1]-[3]. Finally, we remark that the quasi-TEM mode is

used in the literature as a zeroth-order solution in an

iterative evaluation of the true lower hybrid mode of the

line.

The microstrip line configurations are shown in Figs. 1

and 2. Two dielectric sublayers c1 and c* divided by the

surface y = O are enclosed in a rectangular shield a X (/rl

– b2). The strip conductors of width 2C are printed on the

interface with center at x = A for one-conductor configu-

rations (Fig. 1) and at A and a – A for symmetric two-

conductor ones (Fig. 2).
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The Green’s function G for these configurations is a

potential function with zero value on the shield surface

and a unit line source on the interface at (x’, O). It is so

defined that the electrostatic potential +(x, y) of a line

charge q (C/m) at (x’, O) at any point (x, y) inside the

shield is: +(x, y) = qG(x, y; X’)/T(tl + C2). For G four

expansions have been developed in [1]. The last, G&, is the

more appropriate one when line sources are near the walls

x = O, a and when y G O; this last condition, y = O, is

always imposed in the process of obtaining the integral

equation for strip conductors printed on y = O. We there-

fore provide here the explicit expansion Ga for G. With

k =1,2 denoting regions CI(O < y < bl), Cz(bz < y < O) in

the cross-sectional configuration of the line, we have from

[1]

Ga=G~(x, y;x’) = – ~ln[(x–x’)2+ y2] +G;(x, y;x’), k=l,2 (1)

{
G;= ~ln[(X-FX’-2a)2+ y2] + ~ln[(x+x’)2+ y2] –J (a–x)(b~– y)ln(2a– x’)

abk

}
+x(bk– y)ln(a+ x’)+ ~(a–x)y ln[(2a–x’)2+b~] +~ln[(a+x’)2+b~] + ~ fl’fk)(x, y;x’) (2)

j=l

. sin(~) sinh(~)

Sp(x,y;x’) = ~
~=1 (Mmbkj {-2msin(%)exp(-~lbkl)m T sinh —

a

[ 1[–dm ~(–b~+ix’) +dm ~(–b~–jx’) +d] ~[~(-b.-~(x’-2a))]}

s;(~)(x, y; x’) = ~
~=1

‘in(%+nh(%ld()(m 77a m

mv sinh —
b~

_a–xf

II

b~ 1

sp(x, y; x’) = ~
??1=1 ‘in(m:!:~:;ix)dm(”-2x’)

b~

(3)

(4)

(5)

.:(”(Y)si.h[-
f$’~(k)(x, y;x’) = – ~ sm ;(bk-Y)]/[m.si.h( W) B.]},:2D.[(.)

/[(hb2)l-(l-y/bk)[g(a +x’)x-g(2a -x’)(x -a)] a ~-~

‘2b21sin(%+[sinh(H(a+x’)+sinh(~.,,)g(2a-xf)]/[.isin(*)~

(6)
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where, with E denoting the complex conjugate of z,

~m(z)=Re{exp(mz) [E1(mz– imm)-E1(nz)]

+exp(–m2)[El(– rn2-imT)

–El(–?nz)]} =dm(–z) (7)

El(z) being the exponential integral function [1], [4]. Also,

(8)

( )[clbl c~b2
H.=sinh fufl T– 1(9)

~ SiU2 (unb2/bl)

,1{ “nl-%’’)sin(%

Dm[(i’) = (–1)’+161 2nexp

+ d.
[ 1[:(- b,+ix’) -d~ :(- bI-ix’) 1

-d~[~(- bl-i(x’-2a))])/sinh( ~b~)

(lo)

—ln(x’2+b~)g(x’) = ;;
1

— ()~ln(x’z+b~)– ~ – > lnlx’1. (11)
2 ~ b2

Also, we define 6(x)=1 for x = integer, 8(x) = O other-

wise, while tin are the positive roots of the transcendental

equation

,( )b2

61c0tu=e2c0t KU “
(12)

Obviously, in this form of G three logarithmic terms are

extracted out in closed form, corresponding to line sources

at (x’, O) and at (the image positions) (– x’, O) and (2a –

x’, o).

Now let al(x) (C/m2) be the surface charge distribution

of the single-strip conductor of Fig. 1. The electrostatic

potential function at any point (x, y) inside the shield is

4,(X>Y) = 1 JA+cul(x’)Gk(~!Y;~’)dx’.(13)
7r(q+ 62)A–c

If the potential of the strip conductor is I) (x, O) = V (A – c
< x < A + c), a Carleman-type singular integral equation

(SIE) [5], [6] is obtained for al(x) by letting y = O in (13).
Observing further that G~(x, O; x’) is the same for either

k =1 or k =2, owing to the continuity condition at y = O,

and setting x= A+ct, x’=A+ct’ (–l<t, t’<1), and

U1(A+ Ct’) = o(d)

G;(A+ct,O; A+ct’)=Gc(t, t’)
(14)

we end up with the “traditional” form of the Carleman-

type equation:

7r(q+EJv— -lnc/l a(t’)dt’+~l Gc(t,t’)a(t’)dt’
c –1 –1

=~1 lnlt-t’lo(t’) dt’. (15)
–1

It should be noted that for y = O the expression
S~(~)(x, (); x’) simplifies considerably while ~~(k)(x, 0; x’)

=Oforj=l,3,4.

II. SOLUTION OF THE INTEGRAL EQUATION BY THE

CARLEMAN-VEKUA METHOD

If the left-hand side. of (15) is considered for a moment

to be a known function of t, then the Carleman-Vekua

method of regularization [6] proceeds by inverting it with

the use of Carleman’s formula [5]:

(16)

where { denotes principal value integral. This equation

may be written as a Fredholm-type integral equation [6] in

the concise form

u(t)+ j:, K(t, t’)a(t’)dt’= h(t)
1

1 C1+E2

[
– —.v+lnc/:’J(t’)dt’] ’17)

‘(t) = .~~ ln2 c

Here use of the simple result j! ~dr/~= = r was

made. Also,

[

, ~ 8GC(, t’)
~f Gc(,, t’) ~~ +, ~_t ,7’ ‘r

‘(t’ “)= ~z~> ln2 ., 1. [ J{1ln12a–2A –c(7+t’)l+ln 12A+c(7+t’)1
.24h k -,

-( au) [:a)
1–<–:7 ln12a– A–ct’l– —+~~ lnla+A+ct’1

[( ,)

Ac
— ;+;T g(a+A+ct’)– ‘–1+~~ g(2a– A–ct’) 1/( )(. .)’ t-f
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The step from (16) to (17) and (18) involves a change in

the order of integration over t‘and ~, both for the ordi-

nary and the principal value integral. Since G C(r, t) and

dGC( ~, t)/dT are nonsingular functions in – 1< t’, ~ <1,

as seen from (1) and (2)–(6), this change is permissible [6,

pp. 47-52].

We next expand u(t)in a series of Chebyshev polynomi-

als:

u(t) = & ~~Oa.T.(t), –l<t<l (19)
——

incorporating, with the common factor (1 – t 2, – 1/2, al.

ready present in A(t) and ZC(t,t‘),its expected behavior at

the edges t= ~ 1. Substituting into (17), multiplying by

~M(t) (M= 0,1,2, . . o), integrating from t= – 1 tO t=1,
and using the orthogonal property

~’T.(t)TM(t)+=6NMcMm,2
–1

(?
{

o, N#M

(

1,NM =
1, N=M

CM =
2, ;:: (’0)

we end up with the following set of linear equations:

T co 8M077 61+62
aM—cM + ~ K~Ma~ = —

2 ( 1
—V+aOlnc ,

N=O ln2 c

in which

AS seen from (18) the coefficients KMN requiretheevalua-

tion of triple integrals over t,t‘,T.The advantage is that

the dependence of K(t, t‘) on t,t‘appears in separated

form and the series involved converge rapidly and uni-

formly. The order of integration can be interchanged in

any desired way, greatly facilitating the evaluation of K~~.
The result can be expressed in terms of six integrals, II to

16, defined below in the order in which they come up in

expressions (18) and (22). These integrals are evaluated in

the Appendix. Two preliminary results help reduce the
number of symbols. From (20) and the first integral in the

Appendix, we have

I
1 TN(t) (z1+z2t)

-, ~~
dt = Z@No + Z2;8N1 (23)

M, N=0,1,2, . . . (21) (24)
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The triple integrals appearing in (18) and (22) are then

TN(t’) 1 T~(t) ~ lnlzl+zz(~+t’)l

J~:1~~ f.l~~ -, JG
dt’dtdr = T8~O~1(N; Zl, Z2)

TN(t’) I lnlzl+zz(~+t’)l dl,d~
II(N; Zl, Z2) =

J:l ~g J_, is
> lz2/zll <1/2

J

1 ~N(t’)lnlz1+z2t’l 1 TM(t) 1 z3+z47 772

dt’dtd~ = y8~Oz312(N; zl, Z2,0)
–1 J_, ~~” J-1 ds~~ —

J 11 TN(t’)ln [(zI+z2t’)2+z~ 1 T~(t) 1 z4+z5~

–1 ~.l ~~ ~_l ~= dt’dtdTJ= —

. 7r’8Moz412(N; z~, z’, Z3)

l’(N; zl>z’>z3)=/
1 TN(t’)ln [(zI + z2t’)2+ z; 1

–1
~ dt’, -1<:<1, Z3>0

J

1 TN(t’)sin(zl+z2t’) 1 T’(t) 1 sin(z3+z4~)

~~ —!_l~~ 1, J=
dt’dtdT = T8~013(N; Zl, Z2)~3(O; Z3, Z4)

–1

I TN(t’)sin(zl + z2t’)
13(N; Z,, Z2) = j_l

~~
dt ‘

J

1 ~~(t’)dm(zl + z2t’) 1 7“(t) 1 sin(z3+z4T)

~g /_l~~ J_l J=
dt’dtdr = 7r8~013(O; Z3, Z4)14(N, m; Zl, Z2)

–1

14(N,~;z1>z2)=~

1 T“(t’)d~(zl + z2~’) dt,

–1 ~g

J

1 ~~(t’)g(z1+z2t’) 1 ~~(t) 1 sinh(z3+zqT)
dt’dtdr = – in8~o~3(o; iz3, izJg(N; ‘l, z2)

–1 ~~ l_,~s L ~n

25

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)
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(42)

The final expression for K~N can now be written in a concise expression by introducing the two additional sym-

bols L~N(A, c) and ~*jv(A, c). Thus,

(
A 8~0

— + &M1
)[

/
61

I,~~(A, c)=– –
a lr12 2a

~IJN; a+ A,c, O)+g(N; a+ A,c) ;–z
/( , b, )1

(43)

III. DOUBLE-STRIP CONFIGURATIONS

Such configurations lead to a system of integral equa-

tions for ul(tl)and u2(t2).More practical cases consist of

strips with the same width, 2c, and centers at x = A and

x = a – A, i.e., symmetrically placed with respect to the

midplane x = a/2, as shown in Fig. 2. They are raised to

potentials V and QV, with Q = 1 implying equal currents

and charges, Q = —1 opposite ones, and Q = O the absence

of the left strip, i.e., the single-strip configuration of Fig. 1.

Owing to the symmetry

u2(–t) =Qul(t) =Qo(t), –l<t<l (46)

and the potential +~ (x, y) at any point inside the shield is

~k(x, y)= 1 jA+cu,(~’)Gk(x,Y;x’)d~’
~(fl+~z) ,4-C

/

a—A+c
+ U2(X’’)Gk(X, y; X“) dx”,

a—A—c

(45a)

(45b)

Letting y=O, x= A+ct, x’=A+ct’, x“=a-A+ct”,

G;(A + ct, O; A + et’)= G’(t, t’), and G;(A + ct, O; a – A

+ et”) = G~(t, t“), with t,t’,t“ in [ – 1, 1], we obtain a

Carleman-type singular integral equation for u(t):

-~(cl+~,)V-lnc ~1 u(~’)dt’+~’ u(t’)Gc(t,t’)dt’
–1 –1

- Qk 12A - al~~lu- r“) c&+ Q~~lo( - z“)

[
. G~(t, t“)-lnll+ +(t - t“)jdt”

=/lcr(t)lnlt-tldt. (48)
–1

Inverting this as before with the use of Carleman’s formula

[5], we end up with a relation similar to (17), namely,

u(t)+/l K(t, t’)u(t’) dt’
–1

k=l,2. (47)
+ Qf1K2(t, t’) u(– t’)dt’= hz(t) (49)
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where

11
h2(t)=— —

[
‘(cl+ c,) V+lnc

7rln2 ~~ c
/’a(t)dl+Qln12A-a,j’ o(-t)dt

–1 –1 1

“[aG;(T, t’) c\(2A – a)

8T ‘~+

]1
&( ’-t’) “ “

It is worth noting here that G~(~, t’) differs from G’( T, 1’)

only in that x’= A + d‘ in the former is replaced by

a – A + ct’in the latter, a change that can be easily traced

down the sequence of equations (2), (6), (10), (11), (18). To

save space we will not give for K2( t, t‘)a result as explicit

as (18) for K(t, t’), but will proceed to the solution of (49)

through the substitution (19) for u(t)and the sequence of

steps following it up to (21) and (22). We will then provide

explicit results for the new coefficients K~~ ( Q ), where

K~~ (0) = K~~ as defined in (22) and (45). Two additional
integrals, which are also evaluated in the Appendix, should

first be defined:

J1 lnl+
–1

&( T-t’) “
m ‘t’dt ’52)

T~(t’)
WMN = c

J

1

n2(2A – a) .1 ~~

dr

&(r _ t,, dt’dt.

(53)

1+

In place of (21) we now end up with the following set of

linear equations for the determination of the expansion

coefficients a~ of u(t)in (19):

aM;6M + ~ ‘m(Q)ajv
N=O

[
8M077 (61 +62)V

.—
In 2 1

+aO(lnc+Qln12A– al) ,
c

M, N=0,1,2,... (54)

27

(50)

(51)

where

KMN(Q) ‘KMN+Q(-l)N(PMN +W~N+ K~N),

Q= O,kl. (55)

K~N are obtained from KMN, given in (43)–(45), if the

following substitutions are made in these equations: The
integrals 13(0; Zl, Z2) (for N = O) and 16 remain exactly the

same; in the integrals l~(W, Zl, Z2) (for N > O), 12, and Id,

as well as in the expression g( N; Zl, Z2) defined in terms of

12 in (35), A is replaced by a – A; in the integrals II and

IS the parameter 2A is replaced by u. Otherwise expres-

sions (43)–(45) remain unchanged.

IV. EVALUATION OF THE FIELD

The potential ~~(x, y) at any point inside the shield is

given by (13) for the single-strip configuration and by (47)

for the double strip-configuration. Changing the variables

x’= A + et’, x“ = a – A + et” and substituting

and (46), we end up with integrals of the form

/1f(t’)[Tn(dd=] dt’
–1

from (19)

in which the ~( t‘)are nothing more than functions appear-

ing in the integrals Iz, 13 and 14 defined by (29), (31), and

(33). Therefore, the integration of (13) can be carried out

immediately, leading to the result given below; it is written

in a compact form for all three cases, Q = O, +1, using the

following simple notation:

QN=l for Q= O; QN=Q(-l)N

for Q =+1 (56)

l~(X, Y)=%(X>y; O;A) for Q=O (57)

y~(~, y)=@~(x, y; O; A)+@~(x, y; Q;a– A)

for Q =*1 (58)
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where

4%(~,Y;LA)

c
. 1~ Q~a~ -~ L(~; X-~, -C, Y)+~12(iV; X+~-2~, C,Y)

d%+~2) ~=o

+&;x+A, c,y)-& [(a-x) (b, -y)12(N;2a -A, -c,O)+x(b, -y) I,(N; a+ A,c,0)
k

(::’ ~ ‘in(=)sinh(%+(a–x)y12(N; 2a– A,–c, bk)+xyIz(N; a+ A,c, bk)]– ————.—

~=1

D
w ‘in(?) sinh(&)I ~m _7a+ff mc) ‘“

mNk + ~

()(
m 7ra 4>;———

~=1
m T sinh —

+ ~ ““(%!’’~(m”;)l ~m .A_2:mc) ‘k

()(
m va 49;

~=1
mvsinh ————— ~’<

+~l(si.(Y)sinh~:.~)/[m~~ms’”h(&~.)]}

/[(4 %)1
“ ~ b~iv/-(l- Y/bk)[xg(N; a+ A,c)-(x- a)g(N;2a-A, -c)] a ~-~

[=1,2

( %)[sinh(:)g(~’a+~c)

+2b~ ~ sin u
~=1

()

a—x
+ sinh u~— g(ZV;2a-A, -c)

1 ]/[~..:’’n(*)]+,;,21)lE,E,

I

. ~ 'in(~)8($q)[sid(mq~)~4(~~;m&~)+sinh(~)lo(~,~;-*~,-~)]

Q=l

~nbksid(~)[~a(~q)-~a($q)l

( Y)[sinh(”Y)’4(N’’T% :)+ ’’fi(~;)

-~~sin Un
In–1

(59)

J

The field components EX = – 6’~/ax, EY = – 8 ~/8y are obtainable from (57)–(59) by direct differentiation.
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TABLE I

r I

aodog

.16503972

.16580063

.16589042

.16589882

.16589969

.16589979

t

alxlOIO a2x1010

.69760991

.71207912 .24783549

.71363888 .24902300

.71380613 .24916498

.71382505 .24918296

.71382739 .24918536

.15221197

.15267859
,15274041
.15274589
.15274645
.15274652

alx10 10 a2x10 10

.68273597

.69523549 .22274080

.69658409 .22384067

.69672972 .22396869

.69674623 .22398514

.69674827 .22398734
I I I

aOxlOg alxlOIO a7x1010

.17872877

.17987161

.17994227

.18000945
,18001072
.18001088

.70775257

.72441468

.72620774

.72639918

.72642079

.72642347

.27554206

.27682951

.27698752

.27700723

.17700987

Q.o I
a3x1010 a4x1011

1
a5x1011 a6x1012

.10272891

.10282790 .36188051

.10284161 .36196967 .13021395

.10284361 .36198374 .13022276 .4961495

Q= 1

a3x1010 a4x1011 a5x1011 a(ix1012

.97737300

.97827682 .33541122

.97840342 .33549406 .12181764

.9784218 .33550713 .12182584 .46311641
— J

Q=.1

a3x10 10 a4x1011 a5x1011 a6x10 12

.10762585

.10773426 .38995803

.10774910 .39005391

.10775126 .39006906 1 :;%% .5.30 /0!6:?

U=4, bl =2, bz=–l, A=3.4, C=0.5, C2=10C1

V. NUMERICAL RESULTS AND COMPARISONS

We start by providing in Table I results for the expan-

sion coefficients a ~ of u(t) in the case a = 4, bl = 2,

bz = – 1, A = 3.4, c = 0.5, Cz= 10cI, and Q = O. The strip

is placed very close to the right wall x = a and the results

show that by retaining the first seven coefficients an accu-

racy in U(t) and ~~(x, y) of at least three significant

decimals is obtained, i.e., la6/aols 0.001. In other situa-

tions, with the strip closer to the center, even fewer a~ will

suffice. By providing values of a ~, in C/mz, for successive

values of the truncation size iV~, Table I shows, further,

how rapidly the a~ settle to their “final” values and with

what accuracy. As observed previously [3], the evaluations

of the characteristic impedance 20 of the shielded mi-

crostrip and of its ~eff depend only on a. (as well as on a.

for C2= cl, a special case of this paper’s analysis that may

be based on the simpler forms G., GB of G obtained from

[1]), which settles to its “final” value for much smaller

truncation sizes (NM = 3 provides four-decimal accuracy

for so); however, values of u(t) or of the field $~(x, y)

require the use of more a ~.

In Table II and for a =4, bl = 2, bz = –1, and Ez =lOCI

we provide computed values of 20 and c~ff for various

positions A and widths 2C of the strip conductors in all

three cases Q = O, f 1, Finally, in Table III, 20 is com-
puted and compared with values obtained previously [7] by

two or three other numerical methods. It is remarkable to

notice that our values of ZO, being in very satisfactory

agreement with those of [7], are obtained, with the indi-

cated accuracy, even for truncation size N~ = O; sizes

N~ = 2 and higher do not change them. This is a further

TABLE II

A c Q ZO(II) %ff

2.4 0.1 0 85.63109 5.80037
103.52725

-/
5.97238

68.10269
0.2

5.54730
0 67.99315 5.87613

87.23439 6.06005
-i 50.43838 5,56201

0.3 0 57.77971 5.93601
79.66423 6.10761

-i 40.44088
0.35 0

5.57232
53.93730 5.96210
77.98133

-:
6.11652

37.16603 5.57302
2.9 0.1 0 83.65437 5.73532

87.88445
.;

5.85348
79.46774

0.2 0
5.60811

65.96206 5.79457
70.41284 5.94135

-i 61.71794
0.3

5.63480
0 55.65141 5.84002

60.49404 6.01053
-; 51.31100

0.4
5.67509

0 48.36002 5.87600
53.79658 6.06690

.! 43.89081
0.5

5.66515
0 42.70333 5.90351

48.98706 6.11041
-i 38.08650

3.4 0.2
5.67076

0 57.96996 5.64666
59.00741 5.69811

-i 56.97391
g .4

5.59594
0 38.45592 5.67509

40.34663
-;

5.75084
36.74728 5.60572

~=4, bl =2, b2=—l, C2=lofl

TABLE III

COMPARISON OF Z. WITH EXISTING RESULTS.
—.....—. -—

Iblbzl a/(2c) 12c/b2 I Ezlzl Zo( 0) Values of ZO(Q) frm [?j

5 49.06 48.4 48.5

9 ;: : ::: 33.63 33.1 32.8
5 10 0.8 9.6 54.45 53.8 53.9

5 1 9.6 48.60 47.9 48.5
5 1: 0.4 70.38 69.7 70.9
9 10 1 ::! 61.24 60.49 62.71 60.97

9 10 6.0 26.09 25.95 27.30
9

26.03
10 0:4 6.0 87.41 86.3o 91.37 89.91

1
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Fig. 3. Surface charge density u(x) and equipotential and field lines of
shielded single microstrip: a = 2, bl = – bz =1, A =1.2, c= 0.3, Cj =

10C1, Q = o.

Fig. 5. Same as Fig. 4, but for double microstrip with Q = – 1. Ordy the

right half-section a/2 < x < a is shown.

Fig. 4. Surface charge density O( x) and equipotential and field lines of

single microstrip very near the shield: a =4, bl = 2, b~ = – 1,A = 3.4,

c= O.5, C2 =lOCI, Q=O.

corroboration of the previous remarks and is due, of

course, to the fact that the strip is rather narrow and quite

far from the walls.

What is claimed herein is that, beyond its generality, our

exact analytical treatment is applicable to cases of close

proximity of the strip to the walls or between the strips

(for Q = +1) and to very wide strips as well. In addition, it

is able to provide accurate results for the field everywhere

and in all cases by using the appropriate form of G. This

aspect has been discussed in detail previously [1]. Here we

provide, in Figs. 3–6, detailed field plots: the nine equi-

potentials ~ = 0.9-0 .8-... –0.1 between ~ = 1 on the strip

and ~ = O on the shield, as well as the 20 field lines that

cut the 2c-wide strip at equispaced intervals of c/10. A

dotted line plot of u+ (t), u- (t), on the upper and lower

faces of the strip, is also drawn. The cases Q = O, with a

certain shield width a, cover also configurations with
Q = – 1 and double shield width 2a. In Figs. 5 and 6, for

Q = – 1 and Q =1, only the right half (a/2< x < a) part

of the plot is given, the left half being its image with

respect to the midulane x = a/2. A truncation size of

Fig. 6. Same as Fig. 5, but with Q =1

Nm = 6 or 7 was used in all these plots, most of which, as

may be observed, allow very close proximity of the strip to

the shield. In all cases <2 = 10cI was considered. For some

configurations comparisons were also made with the case

c~ = cl. No plots are included here, but the main difference

they exhibited was the expected concentration of the

equipotential lines near the strip when c* changed from Cl

to 1061.
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APPENDIX t’= Cos(?, r = Cosf.p,

Here we outline the analytical evaluation of the integrals

1,11 to 16, P~~, an d W~~ defined in (24), (26), (29), (31), ‘,=-”fc”s~’fsi”~ sin(~~)::o(- :)’

(33), (36), (39), (52), and (53). Starting with (24), we use
the change of variables t = cos 6 and ~ = cos q Wd reverse

the order’ of integration to obtain
“ i (:)cos%cos’-’edddfp.

~=o ,

I=(si”2~fc:(5:\e ‘“V
Using 2sinqsin(Mq) =cos(i%l-l)q -cos(flf+l)q we

finally get

J

m z“
.— T ,sin Tsin Mqdq= – ~dM1. (Al) 15(N, M; z~, z’ )=-; P:N(-:)P

o

In obtaining this result use was made of the basic Hilbert P–N

formula [8, p. 207]: ~ ()(p Jp–s, N)Es
s= max(O,IV-1)

J

m cos(~e) 1 ~M(t) dt sin ( Mq )

dd=f_,~~=”
. [J(s, M-1)- J(s, M+l)l. (A7)

o Cose–cosq sin q ‘
Coming next to Iz in (29) and observing that with real

T=cosrf, t=coso, h4=o,l,2, ”””. (A2) ~1, 22,.2,,

Next come the integrals 11, Is defined in (26), (36). With in [(zI + zzt’)z+ z?] = 2Reln(zl+ iz~ + z2t’)
t’,T in [– 1, 1] and the restriction lz2/zll <1/2 we obtain

lnlz1+z2(7+t’)1
we obtain

T~(t)

()
=lnlzl!–p~l~ –~ ‘(~+t’)p ‘

~2(N; 21>z’, Z3)=2 Re~~,ln(zl+ iz3+z2t)—
~~ ‘t

=2Re J(‘ln ZI + iz3 + z2cosf3)cos NOd0
o

=lnlzll-p~l~(-f)p ~ (f)~’.t’~-’ (A3)
= Re /( “ in z1+iz3+ z2cosd)cos NOd6..$=()

-T

1
(A8)

z1+z2(T+ t’)
=$ P:O(-;)’(T+O’ For N >0 we integrate by parts:

Z2 sin NO sin $
12=~Re~~

‘~:o(-;)p}o(f)”’t’’-’. (A4)

dd
–mz1+iz3+z2cos0

iel NO .

We consider now the following integral (see, also, [9, P. ~ = – ~ Re ~“
sm 6

d$ (A9)
374]): –rz1+iz3+z2cos0

.

0,

[

s
17

s+N
F—

2

0,

? saNands+Neven
{N-l({’-l)i

= i ‘e ,(fl ({–{, )({–{2)s~Nands+Nodd.

(A5)

Substituting (A3) into (26) and using (AS) we obtain ‘-~Re[’7~i1)l“cm1

()

z’ P

II(N; Z1,.Z2) =lnlzJr28~0- ~ – ZI_— It is obvious that {1=1/(1; therefore, one of the roots Of
p=max(l, iV) P {2+ 2(z1 + iz3){/z2 + 1 = O, say {1,

p–N circle, the other outside. Finally,

“ ,~o (;) J(s@J(P-s’N) (A6) 12(N; Zl, Z2, Z3 )=-~ Re({~),

falls inside the unit

N>O, l{ll<l.

(A1O)while from (A4), (36), (A2), and the changes of variable
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For N= O we get, from (A8),

12(0; ZI, ZZ, Z,) =2 Re~mln(zl +iz, +z,cos O)d0

=27rln
/z1+iz3+ (z1+iz3)2–z;

~ I
I A I

(All)

This result was obtained on the basis of the standard

integral [9, p. 527]

/(
a+m

‘ln a+ bcosx)dx=rln O<lbl <a.
o 2’

(A12)

Here we have Izzl < Izl + iz31, but a = ZI + iz3 is now com-

plex. However, it is easily shown that the formula holds for

complex a as well.

For the integral 13 in (31) we change the variable

t’= cos19 to get

13(N; Z1, Z2)

.—J“cosNOsin(zl + z2cos O) dd
o

= sin Z1
J

“Cos mcos (Z2COS 8) do

o

J+ cos ZI ‘COS h% sin(zzcos t9) de
o

(7rsinzl(-1) “2JN(Z2), N even
.

– 7COSZ1(–1) (~+ W2JN(z2), Nodd ‘A13)

where J~ ( Z2) is the Bessel function and the final result was

based on standard integrals [4, p. 361].

We next go to 16 and perform first the principal value

integration with respect to t. Changing the variables t =

cos d, T = cos q and using (A2) we obtain

7rcos(Me) JO

L= ~“sin2qcos(zs+Z~COSQI)f Cosq _cos8 @

/

77

=_
77 sinp cos (Z3 + Zdcos q) sin Mp drf

o

T.
. ~ ~ [cosz~cos(zicos q)–sinz~sin (z~cosrp)].—

[cos(M-l)v- cos(M+l)~]Jq

7r2
.—

{
— cos 23 sin
2

~[.J~_l(z,)+ .I~+l(z,)]

+ sin Z3cos :[JM_,(Z4)+ ZM+,(Z4)]).

In the above use of standard integrals from [9, p. 402] was

made. Finally, even for M = O, we obtain

MT 2 Mr
16( M;z3, zq)=–

()
—J~(zA) sin y + Z3 . (A14)

24

Next comes the integral Id in (33); d~(z) is defined in

(7) and it is obvious that Id is the sum of four integrals:

ld(N, m;zl, zz)

=(-l) mI~(nzzl-imr, mz,)-I~(mzl, mz,)

+(–l)~l~(– rn21+irn7r, -mi!2)

–IN(–lnE1, -m22) (A15)

where

j’ (
T~(t)

~N(z3,z4) =Re _l exp Z3 +z4t)El(z3+ zdt)—
~~ ‘t

(A16)

Z3, Zq being, in general, complex constants. Changing the

variable t = cos 6 in (A17), integrating by parts, and using

the following relation [4]: d/dz[ezEl(z)] = e ‘El(z) – l/z,

we obtain

J
‘e%+z4c0soE1(z3 + Z4COS 6) COS N6 ddI~(z3, zq) =Re o

= Re ~ ~“sin N9 sin 6

.[e=,+z,cos(? EI(z3 + ZOCOS6)

–1/(z3+zdcosfl)]d& (A17)

For N>O we use sin NOsin O= ~cos(N–l)fl– ~cos(N

+ 1)8 and following the steps that led from (A9) to (A1O)

we obtain the recurrence relation:

~N(z3>z4) = ;[L-1(Z3>Z4 )-I N+1(23P4)I

+ ~Re(J~), N>O (A18)

where II is the root of 12+ 2(z3/z4){ + 1 = O with Iill <1.

To use (A18) requires the evaluation of 1~(z3, ZA) for two

successive values of N. Although it is possible to obtain an

analytic evaluation of 1~ ( Z3, ZJ)— on the basis of the

Maclaurin’s expansion of El(z)+ in z and the use of the

integrals J(.s, N), in (A5), and 12(N; Zl, Z2, O)—the result-

ing expressions, involving triple series, are cumbersome
numerically. It Was found preferable in this particular case

to evaluate numerically 1N(z3, Z4) for either N =1, 2 or

N =6, 7 and to use the recurrence formula (A18) forward

or backward, respectively. As has been discussed above in

Section V N = 7 is sufficient as an upper matrix size. It

was also noted that (A18) works better in the backward

direction, although with N limited up to 7 no problem

arises in either direction.

There remain the integrals P~~, W~~ defined in (52),

(53), occurring in double-strip configurations. They are

very similar to the integrals 11, 15 in (26), (36), differing

only in that the sum ~ + t‘ in the latter is replaced by

r – t‘.Following the steps indicated in (A3)–(A7), we end
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up

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

with

a
P

MO——
MN =

()
F ‘AN

vln2 _
p–rnm(l,~)p 2A–a

P–N

“ ,~o (-l)s(:)@,@J(P-s, ~) (A19)

p+lWMN=–;E (+
P=N 2A–a

P–N

z (-1) ’(:) J(p-s, N)
s = max(O, M–1)

.[.J(S, M-1) -J(S,M+ l)]. (A20)
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